Map Building of Unknown Environment Using L1-norm, Point-to-Point Metric and Evolutionary Computation
نویسنده
چکیده
In the present paper, a method for building a map of an unknown environment (SLAM) derived from the ICP algorithm using point-to-point metric is proposed. The polarscan matching technology is used for estimation of the robot location change between two scans in sequence estimate the correct position of the robot. Since map building is fairly timeconsuming, the algorithm of differential evolution (DE) is used in the calculation. This efficient optimizer provides very good results in different types of small office environment (unstructured and structured). The new type of an algorithm for map building is based purely on simple geometric primitives— vectors and integrates the modern evolutionary algorithm—DE. The presented algorithm falls into the wider group of geometric map builders and is able to build a map of indoor, mostly office, environment without moving objects.
منابع مشابه
Common fixed point theorems for occasionally weakly compatible mappings in Menger spaces and applications
In 2008, Al-Thaga and Shahzad [Generalized I-nonexpansive self-maps and invariant approximations, Acta Math. Sinica 24(5) (2008), 867{876]introduced the notion of occasionally weakly compatible mappings (shortly owcmaps) which is more general than all the commutativity concepts. In the presentpaper, we prove common xed point theorems for families of owc maps in Mengerspaces. As applications to ...
متن کاملFixed point of generalized contractive maps on S^{JS}- metric spaces with two metrics
In this paper we prove existence of fixed point theorems for Z-contractive map, Geraghty type contractive map and interpolative Hardy-Rogers type contractive mapping in the setting of SJS- metric spaces with two metrics. Examples are constructed to high light the significance of newly obtained results.
متن کاملA New Approach to Caristi's Fixed Point Theorem on Non-Archimedean Fuzzy Metric Spaces
In the present paper, we give a new approach to Caristi's fixed pointtheorem on non-Archimedean fuzzy metric spaces. For this we define anordinary metric $d$ using the non-Archimedean fuzzy metric $M$ on a nonemptyset $X$ and we establish some relationship between $(X,d)$ and $(X,M,ast )$%. Hence, we prove our result by considering the original Caristi's fixedpoint theorem.
متن کامل(JCLR) property and fixed point in non-Archimedean fuzzy metric spaces
The aim of the present paper is to introduce the concept of joint common limit range property ((JCLR) property) for single-valued and set-valued maps in non-Archimedean fuzzy metric spaces. We also list some examples to show the difference between (CLR) property and (JCLR) property. Further, we establish common fixed point theorems using implicit relation with integral contractive condition. Se...
متن کاملSOME FIXED POINT THEOREMS FOR SINGLE AND MULTI VALUED MAPPINGS ON ORDERED NON-ARCHIMEDEAN FUZZY METRIC SPACES
In the present paper, a partial order on a non- Archimedean fuzzymetric space under the Lukasiewicz t-norm is introduced and fixed point theoremsfor single and multivalued mappings are proved.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Polibits
دوره 46 شماره
صفحات -
تاریخ انتشار 2012